L4b ROPAX RB DESIGN

CONTENS

□ ANALISYS MODULES

□ SINTHESYS MODULES

□ APPLICATION TO ROPAX EXAMPLE

DECISION SUPPORT ENVIRONMENT CONCLUSIONS

V. Zanic - Optimization of Thin-Walled Structures

ANALISYS MODULES

ANALYSIS MODELS	OCTOPUS ANALYZER MODULES
Physical (Φ)	FEM STRUCTURAL MODELER MIND – generator of minimal dimensions
Environment (ε)	OCTLOAD - load model
Response (ρ-1)	LTOR- primary strength fields (warping displac.; normal/shear stresses)
Response (ρ-2)	TOKV -secondary strength fields: transverse and lateral displacements, stresses
Adequacy / feasibility (α-1)	 EPAN – library of stiffened panel and girder ultimate strength & serviceability criteria. (FATCS – Rules fatigue calculation-Level 1)
Adequacy (α-2)	LUSA – Ultimate longitudinal strength module
Reliability (π-1,2)	 US-3 reliability calculation of element and system failure probability (level 1-3, mechanism.) SENCOR – sensitivity to correlation.
Quality (Ω-1 to 8)	WST / INC - cost/weight DCLV - ultimate vertical bending moment DCLT- ultimate racking load SSR / SCR - reliability measures ICM / TSN - robustness measures

SYNTHESYS MODULES

SYNTHESIS MODELS	OCTOPUS DESIGNER MODULES	
Problem definition (Δ)	 C# shell: SYNCHRO – decision support problem definition, selection of analysis and synthesis methods. Auxiliary modules: CAPLAN – control of Pareto surface generation LINC – definition of feasible subspace based on subset of linear/linearized constraints 	•
Problem solution (Σ)	DeMak optimization solvers: MONTE – multilevel multi criteria evolution strategy FFE – Fractional Factorial Experiments CALMOP - SLP cross section optimizer MOGA - Multi objective GA DOMINO – Pareto frontier filter MINIS – subspace size controller HYBRID – combination solver-sequencer	•
Problem graphics and interactivity (Γ)	MAESTRO Graphic Environment De View C# Environment Design selection modules in metric space: GOAL- interactive goal input SAATY - inter-attribute preferences FUZZY - intra-attribute preferences COREL - statistical analysis of results	

OCTOPUS - DECISION MAKING FRAMEWORK

Model Jobs DeView Job Selection	Subproblem: Opt. SubPro	oblem 1		Model:	ROPAX	~						
ID 1 Name: Optimization_P0 View Sequence View Run	Physical (Φ) Environment. Subsystems Phy Subsys Dno UzvDna Bok V Bok V P7500 V P7500 V P7500 V P3350 V PalNad CS V Analysis Methods Selection Physic Environment MM LC1 mass LC2 LC3	Response Adequation Elements Se Se Name GP1 GP2 GP3 GP4 GP4 GP43 GP45 GP46 GP5 GP5 F GP5 TS LS	Adequacy PSB PCY	bility Quality scriptors Outputs e Name GP1.BBS Dno.TPL Dno.TPL Dno.TSW Dno.TSW Dno.TSF Dno.TSF GP1.HGW GP1.BGF GP1.BGF Reliability Qual Beta-Unz. W B&Bou Elem.FORM S	Properties Details ③ × ○ G ○ → → Rem Rem All ty [eight] Cost afety	Selected Dno.BSF p Dno.HSW a Dno.TSF Dno.TSF UzvDna.TPL GirDna.HSW UzvDna.TPL GirDna.HSW GP7.BSF GP7.HSW Synthesis Method Optimiser Coo FFE Mr GA (Attr SLP	Value 29,18 157,7 13 22,3 9 11 150 12 12 12 28,32 142,4 s Selection dinate Vis sodel Dibute	Min 23 125 7,5 13 7,5 8 130 10 7 20 120	Max 30 162 13,5 22 13,5 170 15 15 30 160 Subproble Add Remove	Step 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1 0,5 0,5 0,5 1 0,5 0,5 0,5 1 0,5 0,5 0,5 1 0,5 1 0,5 1 0,5	Method	
TestGenDat	Subproblem List ID Name 1 Opt. SubProblem 1	Variables	PCB	eters Attributes	2	ionstraints 196	Optimise ZVGAS	er plver	NDOM		Creat Modif Remov	• > •

EXAMPLE OF APPLICATION: ROPAX SHIP

□ The ship's main dimensions:

- Loa=221.2m;
- Lanes=3500m;
- B=29m;
- D=16.4m;
- Tsc=7.4m;

V. Zanic - Optimization of Thin-Walled Structures

PHYSICAL (Φ): - FEM STRUCTURAL MODELER,- MINIMAL DIMENSIONS MODULE

Name: RDPAX Hull Number: 1 Builder: BR0D0SPLIT Bay Location: 102.9 Ship Type: Passenger ✓ Section Number: 1 Hold Length: 11.2 Hold Start: 97.3 Girder Start: 97.3 Girder Start: 97.3 ✓ Simply Supp. Girder Basic Ship Data [m, knots] ✓ Length (L): 215 Draught (d): 10.0 Length (Lpp): 207 Draught, design: 10.0 Breadth (B): 29.4 Draught, scantlings: 10.4	 2.5D FEM model with different cross-sections (web-frame, bulkhead). MIND (minimal dimensions definition from Class. Society Rules-DNV).
Depth [D]: 22.8 Max. Speed: 24.5 Block Coeff. (Cb) 0.68 Service Area: 1 Metacentric Height: 0.5 Probability Level: 1E-8 Deadweight (dwt): 28000 Image: Colored area Image: Colored area Auto Options Image: Colored area Image: Colored area Image: Colored area Close Image: Colored area Image: Colored area Image: Colored area	RoPax

ENVIRONMENT (ε): - OCTLOAD

RoPax

- Class. Society Loads DNV (Note: CRS and IACS -CSR are generated automatically - CREST software).
- Designer given loads from seakeeping analysis (3D Hydro model) are optional input.

LC	DESCRIPTION
1-SAGG	Full load on decks + dyn. / Scantling draught
2-HOGG	Full load on decks + dyn. / Scantling draught
3-SAGG	Full load on decks except D1 + dyn. / T- scantling
4-HOGG	Full load on decks except D1 + dyn. / T- scantling
5-HOGG	Ballast condition /Draught 5.8 m
6-SAGG	Full load on decks + dyn. / Heeled condition
7-HOGG	Full load on decks + dyn. / Heeled condition

V. Zanic - Optimization of Thin-Walled Structures

RESPONSE (ρ -1): - LTOR

RESPONSE (p -2): - TOKV

Secondary strength fields:

- transverse and lateral displ.; stresses
- FEM analysis of web-frame and bulkhead (beam element with rigid ends; stiffened shell 8-node macroelements)

V. Zanic - Optimization of Thin-Walled Structures

$ADEQUACY (\alpha -1) : - EPAN$

RoPax

 $LC 2 - \sigma_{VM}$

- Library of stiffened panel and girder ultimate strength & serviceability criteria
 - Calculation of macroelement feasibility based on super-position of response fields ρ-1, ρ-2 (FEM); ρ-3 (analytical) and using the library of analytical safety criteria

ADEQUACY (α -2) : - LUSA

V. Zanic - Optimization of Thin-Walled Structures

RELIABILITY $(\pi$ -1): - US3

Element and system failure probability (level 1-3, mechanism) (1) FORM approach to panel reliability

(2) β -unzipping method for system probability of failure

Probabilistically dominant collapse scenarios are selected from the (large) set of potential collapse scenarios at the first, second, third and mechanism level.

The system reliability measure at third level (RM-3) was found sufficient for the optimization (design) purpose.

- RM-3 is modeled as a series system of all identified, probabilistically dominant collapse scenarios.
- Structural redundancy can be also assessed from the most dominant failure scenarios

RELIABILITY $(\pi$ -1): - US3

$$\boldsymbol{\mathsf{P}}_{\textit{\textit{I/R}}}^{\text{BUseries}} = \sum_{i=1}^{n_{f}} \boldsymbol{\mathsf{P}}_{\textit{\textit{I/R}}}^{} - \sum_{i=2}^{n_{f}} \Biggl(\boldsymbol{\mathsf{H}}_{\textit{\textit{I/R}}}^{} \Biggl| \underset{j$$

 $\mathbf{B}^{\mathsf{G}}_{\prime\prime\mathsf{R}} = - \Phi^{-1} \Big(\mathbf{P}^{\mathsf{BUseries}}_{\prime\prime\mathsf{R}} \Big)$

$QUALITY(\Omega)$: DESIGN ATTRIBUTES

□ INC / WST - cost/weight modules

- Minimal initial cost
- Minimal struct. weight =max. DWT increase
- □ DCLV ultimate vertical bending moment
 - Calculations using LUSA
- DCLT- ultimate racking load
 - (Deterministic calculation using US-3 analysis module)
- □ SSR / SCR reliability measures
 - Upp. Ditlevsen bound of panel failure/ racking failure prob
- □ ICM / TSN robustness measures
 - (Information context measure / Taguchi S/N ratio via FFE).

V. Zanic - Optimization of Thin-Walled Structures

CONCEPT DESIGN OF ROPAX :

For ship redesign the Yard defined the design objectives:

minimal mass and cost,

- minimal ship height D,
- maximal safety measure

Prototype geometry and topology, design load cases, design parameters, design variables and constraints were to be in accordance with the Yard's practice and DNV Rules for DC.

CONCEPT DESIGN OF ROPAX :

- Basic to the procedure is the treatment of structural adequacy as design quality measures (attributes).
- □ Those quality measures are most instructive if based on the system's ultimate strength (ultimate capacity)
- □ In the described procedure they are:
 - the ultimate bending moment in sagging / hogging,
 - the system reliability measure for racking (including nonlinear frame racking analysis)

thus measuring effectively the quality and feasibility of the entire design variant.

V. Zanic - Optimization of Thin-Walled Structures

Design sequence									
Ste	p	Task	Method	Module*					
	1a	Rule load analysis	DNV	OCTLOAD					
sis	1b	Seakeeping load analysis	3D- panel	BV HydroStar					
se analys	2a	Structural response and adequacy analysis	2.5-D FEM	LTOR- TOKV- EPAN					
respon	2b	Primary ultimate strength analysis	Nonlinear analysis	LUSA+2a					
totype	2c	Deterministic racking analysis	2-D FEM	TOKV- EPAN					
Prot	3a	Probabilistic a. of primary response	M _{SW} , M _W , M _{ULT}	CALREL / SORM+2b					
	3b	Probabilistic a. of racking response	β- unzipping	US3+2c					
	4a	Reliability based concept optim.	OA (L27) designs	DEMAK / FFE+2b+3b					
gn	4b	Filtering of Pareto prototypes	p _{f-rack} - mass - M _{long-ult}	DEMAK (DOMINO)					
ot desig	4c	Selection of preferred designs	Value function	DEMAK- DEVIEW					
Concep	5	Deterministic optimization of preferred designs	Hybrid optimizer	DEMAK / SLP+FFE+ +2abc					
	6	Reliability based re-optimization of optimal design	OA (L27) designs	DEMAK / FFE+3b					
lesign	7a	Structural analysis and optimization	3-D FEM +SLP +DEMAK	MAESTRO					
liminary o	7b	Probabilistic analysis of opt. design racking	β- unzipping	US3+2c					
Pre	7c	Robustness analysis	Taguchi S/N Ratio	ROBUST					

PROTOTYPE:SAFETYANALYSIS

Prototype deterministic safety analysis showed that prototype failed in 35 criteria w.r.t DNV Rules (out of 8820 checks for 7 LCs) in:

 \Box double bottom (stiff. panels/ frames $g_{FCPB} = -0.268$)

- \Box tank-side (st. panels e.g. $g_{U-BCAES,min} = -0.172$)
- deck5-middle (st. panel e.g. g_{PFLB,min}=-0.243)
- Ultimate bending moment-LC1(sagg)=3.93 106 kNn LC2 (hogg)=3.18 106 kNm (bottom collapse in compression-see above).
- □ Identified failed elements were non-optimally strengthened (mass increased 1.2%; strong prototype •)

System failure probability (Ditlevsen upper bound) for the 45 identified relevant (level-3) failure scenarios was: $p_f=0.101 \cdot 10^{-6}$; $\beta_G=5.198$ showing the existence of considerable safety margin

CONCEPT DESIGN OF ROPAX

 Concept exploration included generation of designs via orthogonal arrays based upon Latin squares (FFE).
 Concept design model included 36 design variables.
 Levels were defined via variation of plate and frame scantlings/ thicknesses

- Regarding safety measure, for variant relative comparisons, the COV of marginal distributions for all load components were taken uniformly as 15% and 5% for capabilities (in this example).
- Through the dominance filtering, the eight nondominated designs were generated. The dominant failure scenarios were identified.

RESULTS:

□ The most probable racking failure scenario included failures at deck 3 (close or at tank-side), followed by the bilge structure collapse.

□ For further increment in mass of 3% (point PT7) the probability of failure could be further improved: $p_f=0.374\cdot10^{-7}/\beta_G=5.380.$

V. Zanic - Optimization of Thin-Walled Structures

RESULTS:

□ After strengthening the side and bottom structures and reducing the rest of scantlings, the system failure probability was the acceptable $p_f = p_0 = 0.118 \cdot 10^{-5}$ / $\beta_G = 4.72$, also with acceptable decrease in ultimate bending moments and with solved local prototype problems. Total mass reduction was -2.2% (PT3: PT5)

□ For permitted scantling reduction, the system failure probability increased to $0.1393 \cdot 10^{-5} / \beta_G = 4.69$.

❑ Weight was reduced by 7.3% with decrease in ult. bending moment and with solved prototype problems (PT1).

PRELIMINARY DESIGN:

Elaborate concept/preliminary optimization of the same prototype (with nv = 264, nconstr = 56416) was performed with 3D FEM partial model. It has shown that significant reduction of up to 9.5% in steel mass (560 t of extra DWT) can indeed be achieved with satisfied DNV Rules.

 Preliminary optimization has corroborated the usefulness of the concept design results presented here. Note: both of these optimizations started from the same prototype.

V. Zanic - Optimization of Thin-Walled Structures

PRELIMINARY DESIGN:

□ The last step of concept design is the repetition of the described concept exploration step but centered around selected optimal design variants (e.g. PT1, PT3).

The subjective reasoning of head designer and his prejudices with respect to safety versus cost are part of the yard/owner policy. Extensive investigation in those aspects of the problem is currently being underway for EU and domestic projects.

CONCLUSIONS ON CONCEPT DESIGN:

□ The reliability based design procedure for concept design phase, using the developed interactive design environment, can give a rational initiative for the design improvement using safety as attribute.

□ It is based on the powerful global feasibility and reliability measures for ultimate primary / secondary strength of complex multi-deck ships.

Only relative comparisons of safety attributes are needed in design filtering, resolving thus the problem of required accuracy of the analysis methods.

□ Safety as an objective, not only as a constraint, is a way towards the true meaning of the design paradigm: 'safety versus cost' with two competing objectives.

V. Zanic - Optimization of Thin-Walled Structures

SENCOR SENSITIVITY ANALYSIS (not part of the course)

CONTENTS

V. Zanic - Optimization of Thin-Walled Structures

1. INTRODUCTION

MODULE	OCTOPUS
(4) FEASIBILITY CALCULATION (Normalized Safety Factor)	Calculation of macroelement feasibility using library of safety criteria in program PANEL (C – capability; D – demand)
(5) RELIABILITY CALCULATION	FORM approach to panel reliability. Upper Dietlevsen bound as design attribute
(6) DECISION SUPPORT PROBLEM DEFINITION (interactive)	Constraints: User given Minimal dimensions Library of criteria (see 4) Objectives: Minimal weight, Minimal cost Maximal safety, Maximal collapse load
(7a, b,c) OPTIMIZATION METHOD	Decision making procedure using a) Global MODM program GLO b) Local MADM module LOC c) Coordination module GAZ
(8a,b,c) PRESENTATION OF RESULTS	a) VB Environment, b) Program MG,c) DeVIEW graphic tool
V. Zanic - Optimiza	tion of Thin-Walled Structures
CORRELATION COEFFICIENTS	
Wave load components :	

 $\rho_{ij} = \frac{1}{\sigma_i \sigma_j} \int_0^{\infty} H_i(\omega) H_j^{\dagger}(\omega) S_{xx}(\omega) d\omega$

where: $H_i(\omega)$ - system functions, $S_{xx}(\omega)$ - input spectra, σ_i and σ_i - corresponding standard deviations

Capability components. Exponentially decaying [Handa, Anderson, 1987]:

where: Δx - distance between the elements of the length L κ - defined from experiments

Structure in service, corrosion rates in neighbouring corroded elements [Guedes Soares, 1997]

BASIC SENSITIVITY MATRICES IN FORM AND SORM :

SENSITIVITY ESTIMATES VIA DIFFERENT NORMS Lp(S//R):

BASIC FORMULATION

- R' from Nataf model tables
- series system; linear failure surfaces g_i < 0 (j=1, 5) :</p>

	×1						(1)	0.4	0.2	0.2	0.2	0	0)
	x ₂		(134)		(23)		0.4	1	0.4	0.2	0.2	0	0
	Xo		134		23		0.4	1	0.4	0.2	0.2	0	0
1 0 2 2 1 -5 -5	^3		160		35		0.2	0.4	1	0.4	0.2	0	0
$\mathbf{g}(\mathbf{x}) := \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	×4	μ:=	150	σ =	30	р.	0.2	0.2	0.4	1	0.4	0	0
12100-40	×5		150		30	к :=	0.2	0.2	0.4	1	0.4	0	0
(0 1 1 2 0 -4 0)	Xo		65		20		0.2	0.2	0.2	0.4	1	0	0
	~6		50		15		0	0	0	0	0	1	0.4
	(×7)						0	0	0	0	0	1	0.4
							0	0	0	0	0	0.4	1

INPUT from standard reliability package e.g. CALREL

Matrix $U = [U_i^*] - U$ -space coordinates of Most Probable Failure Points (MPFP) for 5 failure functions.

 $\mathsf{B} = [\boldsymbol{\beta}_i]$

U

	(-0.939	-0.459	-0.753	-1.383	-0.737
	-0.611	-0.307	-1.269	-1.552	-1.072
	-0.297	-0.745	-1.797	-0.843	-1.329
=	-0.781	-0.546	-0.715	2×10^{-5}	-1.396
	-0.569	-0.224	1×10^{-5}	1×10^{-5}	-1.2 × 10 ⁻⁴
	1.21	0.914	0.458	1.219	1.194
	0	0.5	1.062	0	0

 $\Box Y^* = A U, \quad A \text{ from } \mathbf{R}^* = \mathbf{A}\mathbf{A}^\mathsf{T}$

RESULTS Sensitivity matrices B_{//R}, P_{//R}, G_{//R}, H_{//R}, B^G//_R, P^B//_R (=P^B, ° s) are generated. (a) Sensitivity matrix of upper Ditlevsen bound for series system (P^B) -3.187 -1.684 -2.627 -2.066 0 0 0 -3.187 0 0 1.278 -0.618 -1.204 0 -1.684 1.278 0 -11.892 -1.971 0 0 -2.627 -0.618 -11.892 0 -7.383 0 0 P^B_{//R} [%] = -2.066 -1.204 -1.971 -7.383 0 0 0 0 0 0 0 0 -12.9370 0 0 0 0 0 -12.9370 L-norms are used for measuring of relative change of failure probability $\Delta P^{B}/P^{B}$ due to $\Delta(\rho_{km}+\rho_{mk})$ ie. s=[2 $\Delta \rho_{km}/P^{B*}100$]. (For no correlation $\Delta \rho_{km}$ =-2 ρ_{km}) $L_{\infty}(P^{B}_{//R}) = \max \Delta P^{B}(-\rho_{km})/P^{B} = 12.9\% \Rightarrow \text{the most influential coefficient is } \rho_{67}$ L_{row} (P^B_{//R}) =max $\Delta P^{B}(-\rho_{xk})$ /P^B = 22.5 % \Rightarrow for the most influential variable x₄; $L_1 (P^B_{//R}) = \Delta P^B (-R) / P^B = 44.2 \% \Rightarrow$ effect of omitting correlation V. Zanic - Optimization of Thin-Walled Structures

RESULTS

 $\Delta P^{B}/P^{B}$ for ommiting corr.coeff. (k,m)

 $\Delta P^{B}/P^{B} \text{ for } \Delta \rho_{km}$ = deviation from average ρ =0.29

<u>RESULTS</u> (b) Sensitivity of bimodal failure probability Submatrix $H^{(1\&2)}$ //_R, for the worst combination of failure surfaces $g_1 \& g_2$ is composed using normalization matrix s=[2 $\Delta \rho_{km}$ / P₁₂ *100%]. When $\Delta \rho_{km} = -2\rho_{km}$ (correlation omitted) it shows high influence of correlation coefficients ρ_{54} + ρ_{45} and ρ_{67} + ρ_{76} on P_{12} $(\rightarrow$ should be analysed for real systems - parallel, series): 0 -6.827 -3.503 -7.467 -5.894 0 0 -6.827 0 -8.643 -6.404 -4.461 0 0 -3.503 -8.643 0 -6.63 -4.492 0 0 H^{<1&2>}//R [%] = -7.467 -6.404 -6.63 0 -19.308 0 0 -5.894 -4.461 -4.492 -19.308 0 0 0 0 0 0 0 0 0 -14.6630 0 0 0 0 -14.663 0 $L_{\infty}(H^{<1\&2>}) = \max \Delta P_{12}(\bullet)/P_{12} = 19.3\% \implies \text{for the most influential coefficient } \rho_{45}$ $L_{row}(H^{<1\&2>}_{//R}) = max \Delta P_{12}(\bullet)/P_{12} = 39.81 \% \Rightarrow$ for the most influential variable x_4 ; $L_1 (H^{<1\&2>}_{//R}) = \Delta P_{12}(-R)/P_{12}$ = 88.3 % ⇒ effect of neglecting correlation V. Zanic - Optimization of Thin-Walled Structures

ACCURACY

 Sensitivity estimates are extensively compared to FDM (using CALREL runs).
 Brief comparison, within design oriented FORM concept, is given in Table: □ Comparison of influence: $ΔP^B/P^B$ for taking change in st.dev. of Δσ=20% and $ΔP^B/P^B$ for taking variable $x_{1 as}$ uncorrelated

P ^{B0} (R)= 0.072	1	2	3	4
R (ρ _{km} + Δρ _{km})	P ^B (•) estimate	P ^B (•) CALREL	error [%] <u>(1-2)</u> 1	error [%] (<u>1-2)</u> P ^{B0}
Δρ _{km} =20% $ρ_{km}$	0,0790	0,0782	1,01	1,1
∆ρ _{km} is deviation from average ρ	0,0690	0,0688	0,29	0,3
$\Delta \rho_{km} = - \rho_{km}$ totally omitting correlation	0,0400	0,0360	10,00	5,55

EXAMPLE 2 PRACTICAL APPLICATION:

Oil Product Tanker 65,200 dwt, DnV

EXAMPLE 2 PROBLEM DEFINITION :

- random variables x ={x_i} = {sig_x, sig_y, tau_{xy}, p, t_p, E, sig_{Yield}}
- > marginal distributions: Normal (x_1-x_3, x_{5-7}) and extreme (x_4) ;
- > prescribed means μ , standard deviations σ and correlation matrix R;
- series system; Class. soc.(CRS) failure surfaces (yield, buckling) g_i < 0; (j=1-5)</p>

Limit state functions - CRS criteria :

POLP. Parel cellares less husbins (c)		-120		(18)		(1	0.5	0.5	0.5	0	0	0	
PCLB - Panel collapse local buckling (x)		-70		11.5		0.5	1	0.5	0.5	0	0	0	
PCTB - Panel collapse transverse buckling (y)		48		7.2		0.5	0.5	1	0.5	0	0	0	
PCMY - Panel collapse membrane yield	μ:=	-150	σ:=	22.5	<mark>R =</mark>	0.5	0.5	0.5	1	0	0	0	ı
SYCF - Stiffener yield compression flange		15.5		0.3		0	0	0	0	1	0.5	0.5	
SYCP - Stiffener vield compression plate		210000		4200		0	0	0	0	0.5	1	0.5	
		235		4.7		0	0	0	0	0.5	0.5	1	

for the most influential variable x_1 ;

ACCURACY

Sensitivity estimates are extensively compared to FDM (using CALREL runs). Brief comparison, within design oriented FORM concept, is given in Table:

β _g = 2.965	1	2	3	4
$\mathbf{R}(\rho_{km}) = \mathbf{R}(\rho_{km0} + \Delta \rho_{km})$	β(•) estimate	β(•) CALREL	error [%] <u>(1-2)</u> 1	error [%] <u>(1-2)</u> β _G
Δρ _{km} = 20% ρ _{km} ρ _{km} = 0,6	2,875	2,912	1,28	1,24
$\Delta ho_{\rm km}$ = 0.95- $ ho_{\rm km}$, $ ho_{\rm km}$ = 0,95	2,675	2,754	2,95	2,66
$\Delta \rho_{km} = -60\% \rho_{km}$ $\rho_{km} = 0,2$	4,001	3,118	22,1	29,78

V. Zanic - Optimization of Thin-Walled Structures

4. CONCLUSIONS

❑ The comprehensive and numerically efficient method for sensitivity analysis in FORM is presented. It does not require either the derivatives of the transformation matrices or their recalculation.

It enables direct calculation of sensitivity matrices for componential and system reliability measures with respect to all correlation coefficients at once.

☐ The sensitivity matrices w.r.t. correlation coefficients or their parameters are available as the intermediate results of the failure probability calculation.

CONCLUSIONS (cont.)

□ These matrices jointly used, enable efficient identification of most significant correlation related parameters in reliability analysis.

Comparison of sensitivity estimation with FDM approach for system and component reliability measures proves to be sufficiently accurate for design purposes.

The presented method can be easily implemented in existing procedures and computer codes for reliability analysis. It does not require additional structural response evaluation

V. Zanic - Optimization of Thin-Walled Structures

UNIVERSITY OF ZAGREB Faculty of Mechanical Engineering and Naval Architecture

<u>www.fsb.hr/octopus</u> V.Žanić, T. Jančijev, J. Andrić, S. Bralić, S. Kitarović, M.Stipčević, P. Prebeg