# L4c

# SUMMARY ON STRUCTURAL DESIGN METHODS and CASE STUDIES

- 1. DESIGN PROBLEM FORMULATION
- 2. **DESIGN PROBLEM SOLUTION**
- 3. APPLICATIONS

CONCLUSIONS

V. Zanic - Optimization of Thin-Walled Structures

# **1. DESIGN PROBLEM FORMULATION**



### **DESIGN PHASES**

Concept design

Reliability-based design

Preliminary design

using :

- multi-criteria decision making techniques
- design space exploration via Pareto frontier (non-dominated designs)
- development of new macroelements and ultimate strength failure criteria

- development of integrated design procedures

V. Zanic - Optimization of Thin-Walled Structures

#### **SOFTWARE USED IN EXAMPLES**

TORO 1979 ... / (FEM shear flow analysis in bending and torsion) at Zagreb Uni.

MAESTRO/SHIPOPT 1975 ...2006 / (FEM analysis + synthesis) with Profs. O.F.Hughes and F. Mistree for ABS and later for PROTEUS Eng. USA.

#### SOFTWARE (cont.)

OCTOPUS 1990 ...2006 / (FEM analysis, reliability based design ) at Zagreb and Glasgow Uni.

CREST 1999 ... 2006 / (OCTOPUS integrated, FEM analysis, Croatian Register Rules, IACS CSR (T)

DEMAK 1990 ...2006 / (Synthesis using multicriterial decision making ) at Zagreb Uni.





CLASS DRAWINGS, PRODUCTION MODEL

# CONCEPT DESIGN ANALYSIS SYSTEM OCTOPUS ANALYZER:

|                    | CREST - Ex2.crs EI0 XI TC:\PROGRA~1\CRS\CREST\EXAMPLES\EX2\EX2.MDL - FlagShip MAESTRO Modeler                                                                                                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | File View Start Window Help File Edit View Parts Nodes Elements Groups Props & Mattls Loads Tools Help                                                                                                                                                                               |
| Workspace          | 🕞 🔒 🚃 🗶 🚡 🛷 🛷 Coonna 🔽 🗅 🕬 🕾 🎗 🍇 🖉 🖓 🕸 🖬 🔂 🖬                                                                                                                                                                                                                                         |
| workspace          | Ship Data                                                                                                                                                                                                                                                                            |
| MODEL CENERAL      | General Data [m]<br>Name: Bulk carrier 71000 t Hull Number: 71743<br>Builder: Hitachi Shipyard Bay Location: 91.2                                                                                                                                                                    |
| MODEL GENERAL      | Ship Type: Bulk Cargo Section Number: 167                                                                                                                                                                                                                                            |
| DATA ———           | Hold Length 25.5<br>for project CREST wiTH AUTOMATIC<br>SPRING GENAPATION, Corrosion<br>reduction 25 mm Lands based on<br>Gilder Length 22.1                                                                                                                                         |
|                    | MAESTRO lacebc.out. TJ&SB Gilder Statt B1 0                                                                                                                                                                                                                                          |
|                    | Simply Supp. Girder                                                                                                                                                                                                                                                                  |
| BASIC SHIP<br>DATA | Basic Ship Data (m, knots)         Image Parallel           Length (Lpp)         211.945         Draught (d):         12.40           Breadth (B):         32.2         Draught, scanlings:         13.41                                                                            |
|                    | Depth [D]:         18.6         Max. Speed.         14.0           Block Coeff. (Cb)         0.8654         Service Area:         1           Metacentric Height:         2.75         Probability Levet:         1E.8           Deadweight (dwt):         71749         1         1 |
|                    | Auto Options  Girder Spring Generation  Girder Spring Generation                                                                                                                                                                                                                     |
| MODEL              | Close INext> Select/enter a menu or function                                                                                                                                                                                                                                         |
| FICUPE             | HPY: 15.00, -15.00, -45.00 mm (+ /top/sub1/mod1 NUM                                                                                                                                                                                                                                  |

V. Zanic - Optimization of Thin-Walled Structures

# ANALISYS MODULES

| ANALYSIS MODELS                 | OCTOPUS ANALYZER MODULES                                                                                                                                                 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical<br>(Φ)                 | FEM STRUCTURAL MODELER<br>MIND – generator of minimal dimensions                                                                                                         |
| Environment<br>(ε)              | OCTLOAD - load model                                                                                                                                                     |
| Response<br>(ρ-1)               | LTOR- primary strength fields<br>(warping displac.; normal/shear stresses)                                                                                               |
| Response<br>(ρ-2)               | <b>TOKV</b> -secondary strength fields: transverse and lateral displacements, stresses                                                                                   |
| Adequacy / feasibility<br>(α-1) | <ul> <li>EPAN – library of stiffened panel and girder ultimate strength &amp; serviceability criteria.</li> <li>(FATCS – Rules fatigue calculation-Level 1)</li> </ul>   |
| Adequacy (α-2)                  | LUSA – Ultimate longitudinal strength module                                                                                                                             |
| Reliability<br>(π-1,2)          | <ul> <li>US-3 reliability calculation of element and system failure probability (level 1-3, mechan.)</li> <li>SENCOR – sensitivity to correlation.</li> </ul>            |
| Quality<br>(Ω-1 to 8)           | WST / INC - cost/weight<br>DCLV - ultimate vertical bending moment<br>DCLT- ultimate racking load<br>SSR / SCR - reliability measures<br>ICM / TSN - robustness measures |

# FMENA data base for calibration of mathematical models of thin-walled structures



V. Zanic - Optimization of Thin-Walled Structures

# PHYSICAL (Φ): - FEM STRUCTURAL MODELER, - MINIMAL DIMENSIONS MODULE

| 🕲 Ship Data 🛛 🗙                                        |   |
|--------------------------------------------------------|---|
| General Data [m]                                       |   |
| Name: ROPAX Hull Number: 1                             |   |
| Builder: BRODOSPLIT Bay Location: 102.9                |   |
| Ship Type: Passenger Section Number: 1                 |   |
| Hold Length: 11.2                                      |   |
| Hold Start: 97.3                                       | • |
| Girder Length: 11.2                                    |   |
| Girder Start: 97.3                                     |   |
| 🗹 🔽 🔽 Simply Supp. Girder                              |   |
| Basic Ship Data [m, knots]                             |   |
| Length (L): Draught (d): To o                          |   |
| Length (Lp.) 215 Draught design: 10.0                  |   |
| Breadth (B): 29.4 Draught scantings: 10.4              |   |
| Depth (D): 22.8 Max. Speed: 24.5                       |   |
| Block Coeff. (Cb) 0.68 Service Area:                   |   |
| Metacentric Height: 0.5 Probability Level: 1F.8        |   |
| Deadweight (dwt): 28000                                |   |
| ↓                                                      |   |
| Auto Options                                           |   |
| Girder Spring Generation 🔽 Global Shear Force Included |   |
|                                                        |   |
| Close Next >                                           |   |
|                                                        |   |

- MAESTRO MODELER used to define 2.5D FEM model with different crosssections (web-frame, bulkhead).
- MIND (minimal dimensions definition from Class. Society Rules-eg. IACS CSR for tankers).





# ENVIRONMENT (ε): - OCTLOAD



LC 6 and 7

RoPax

- Class. Society Loads DNV (Note: CRS and IACS -CSR are generated automatically - CREST software).
- Designer given loads from seakeeping analysis (3D Hydro model) are optional input.

| LC     | DESCRIPTION                                        |
|--------|----------------------------------------------------|
| 1-SAGG | Full load on decks + dyn. / Scantling draught      |
| 2-HOGG | Full load on decks + dyn. / Scantling draught      |
| 3-SAGG | Full load on decks except D1 + dyn. / T- scantling |
| 4-HOGG | Full load on decks except D1 + dyn. / T- scantling |
| 5-HOGG | Ballast condition /Draught 5.8 m                   |
| 6-SAGG | Full load on decks + dyn. / Heeled condition       |
| 7-HOGG | Full load on decks + dyn. / Heeled condition       |

# RESPONSE (p -1): - LTOR



#### Primary strength fields

- Warping displ.; normal/shear stresses

 Extended beam theory (cross section warping fields via FEM in vertical / horizontal bending and warping torsion)



V. Zanic - Optimization of Thin-Walled Structures

# RESPONSE (p -2): - TOKV



#### Secondary strength fields:

transverse and lateral displ.; stresses

 FEM analysis of web-frame and bulkhead (beam element with rigid ends; stiffened shell 8-node macroelements)



V. Zanic - Optimization of Thin-Walled Structures

# ADEQUACY ( $\alpha$ -1): - EPAN / ELAN(IACS CSR)

- Library of stiffened panel and girder ultimate strength & serviceability criteria
  - Calculation of macroelement feasibility based on super-position of response fields ρ-1, ρ-2 (FEM); ρ-3 (analytical) and using the library of analytical safety criteria



| NAME  | CRITERIA DESCRIPTION - PLATE                  |
|-------|-----------------------------------------------|
| РСМҮ  | Panel Collapse Membrane Yield (Von<br>Misses) |
| PYLS  | Panel Yield Longitudinal Strength             |
| PCAPS | Panel Collapse Arched Plate Yield             |
| PCAPT | Panel Collapse Arched Plate Shear             |
| PFLB  | Panel Failure. Local Buckling                 |
| PCES  | Panel Collapse Edge Shear                     |
| S-UCS | SLS, Uniaxial Compressive Stress              |
| U-UCS | ULS, Uniaxial Compressive Stress              |
| S-ES  | SLS, Edge Shear                               |
| U-ES  | ULS, Edge Shear                               |
| S-ULL | SLS, Uniform Lateral Load                     |
| U-ULL | ULS, Uniform Lateral Load                     |
|       |                                               |

V. Zanic - Optimization of Thin-Walled Structures

# ADEQUACY ( $\alpha$ -2) : - LUSA-1,2,3



#### • Ultimate longitudinal strength

 Incremental ultimate strength analysis of cross-section using IACS and extended Hughes/Adamchak procedures



# RELIABILITY $(\pi$ -1): - US3

System failure probability based upon  $\beta$  -unzipping method for system probability of failure

 Probabilistically dominant collapse scenarios are selected from the (large) set of potential collapse scenarios at the first, second, third and mechanism level.

• The system reliability measure at third level (RM-3) was found sufficient for the optimization (design) purpose.

RM-3 is modeled as a series system of all identified, probabilistically dominant collapse scenarios.



# ROBEX

**Robustness Analysis by Fractional Factorial Experiments Robustness** is the sensitivity to uncertain (uncontrolable) parametrs. A metric developed by **Taguchi** is the ratio of

- mean of the attribute value (μ), resulting from the values of design variables, to
- variation resulting from uncertain parameter values measured via standard deviation (σ).

 $SN_n = 20 \log(\mu / \sigma) = 10 \log(\mu^2 / \sigma^2) = 10 [\log(\mu^2 / \sigma^2)]$ 

It is the ratio of predictability versus unpredictability. SN = robustness attribute in multi-criterial design The most robust design coresponds to max SN.

V. Zanic - Optimization of Thin-Walled Structures

# $QUALITY (\Omega): DESIGN ATTRIBUTES$

- INC cost module
   Minimal initial cost
- WST weight module
  - Minimal structural weight = maximal DWT increase
- DCLV ultimate vertical bending moment
  - Calculations using LUSA
- SSR / SCR reliability measures (maintenance, risk analysis)

- Upp. Ditlevsen bound of panel failure/ racking failure probab.

- ICM / TSN robustness measures
  - (Information context measure / Taguchi S/N ratio via FFE).

# CSMIND

#### Minimal dimensions verification according to IACS Rules

- Calculation of minimal structural element dimensions according to CS descriptors

- Comparison of the as built and required dimensions

-Verification of a corroded element dimensions

Selection of CS tests for strake plating

V. Zanic - Optimization of Thin-Walled Structu

| CREST - Ex2.crs             |                       |      |
|-----------------------------|-----------------------|------|
| File View Start Window Help |                       |      |
| 🖻 🖻 🔜 🕷 🛅                   | i 🔗 🤣                 |      |
| - Strake                    |                       | ×    |
| Strake ID:                  |                       |      |
|                             |                       |      |
| Plate Frame Gi              | rder Stiffeners Load  |      |
| Test to Perform             |                       |      |
| Side Bottom Girder          | F Engine Room         |      |
| Central Bottom Girder       | 🖵 Deck Inside Hatch   |      |
| F Keel                      | F Exposed Deck        |      |
| F Bottom                    | 🖵 Strength Deck       |      |
| Inner Bottom                | 🖵 Deck Stringer       |      |
| F Bilge                     | 🖵 Tween Deck          |      |
| F Side                      | F Wood Deck           |      |
| ☐ Side of tweendeck         | F Bulk Deck           |      |
| 🖵 Shear Strake              | 🦵 Car Deck            |      |
| 📕 Longithudinal Bulk.       | 🦵 General Cargo Deck  |      |
| F Bulwark                   | 🖵 Deck 3rd, 4th       |      |
| Tankstructure               | C Superstructure Deck |      |
| F Side Stringer             | 🦵 Hatch               |      |
| C1/CBS 52211                |                       |      |
| Long Bulk                   | Longer Side 0         |      |
| Dist from inner             | Shorter Side 0        |      |
|                             | Weel Print 0          |      |
|                             |                       |      |
|                             |                       |      |
|                             |                       |      |
|                             | т. (Г.                |      |
| K Back Modify               | Close Next >          |      |
|                             |                       | الشا |

# CALCULATOR

Criteria recalculation for new element dimensions

Automatic assessment of feasibility criteria for the selected strake using input from OCTOPUS solver

Calculates the feasibility criteria for the selected strake using user provided stresses and new scantlings

Independent safety criteria evaluation.

| le View Start       | Window H       | lelp             |                             |                   |              |  |
|---------------------|----------------|------------------|-----------------------------|-------------------|--------------|--|
| 🛩 🖪 🛛               | iii 🕵          |                  | <b>()</b>                   |                   |              |  |
| CRLife / Cal        | culator        |                  |                             |                   | ×            |  |
| Element<br>Load Cas | ID: 7          | ▼ Cali<br>▼ Cur  | culation ID:<br>ved Plate R | 1 •               |              |  |
| Strake Panel        | [N,mm]         |                  |                             |                   |              |  |
| Length:<br>Breadth: | 2550.0         | You<br>Pois      | ng's Module:<br>on's Ratio: | 2.06E+05          |              |  |
| Thickness:          | 15.0           | Yield            | Stress:                     | 355.0             | 1            |  |
| No. of Stiff.:      | 0) Simetry Pla | e V HS<br>nes 25 | ₩ TS₩ B<br>0. 10. 9         | SF TSF<br>90. 15. |              |  |
| CRS Load or I       | CREST Load     |                  |                             |                   |              |  |
| M-s                 | Si             | gma-x: 0.0       | F                           | Ratio-x: 1.00     | -            |  |
| M-w                 | Si             | gma-y: .91.      | 1 F                         | Ratio-y: 1.362    |              |  |
| F-s                 | Te             | ач-жу: 0.0       | F                           | Ratio-xy: 1.00    |              |  |
| F-w                 | Pr             | essure: 0.0      | F                           | Ratio: 1.00       |              |  |
| Pure (Co            | mbined) Benc   | ling 🔽 (         | One (Two) Pl                | ane Bending       |              |  |
| Adequacy Par        | rameters       |                  |                             |                   | 국왕<br>고려하고 1 |  |
|                     | PLAT           | E BETWE          | EN STIFFE                   | NERS              |              |  |
|                     | PCMY           | PCLB             | PCES                        | S-UCS             |              |  |
| <u> </u>            |                |                  |                             |                   |              |  |
| D-x                 |                |                  |                             |                   |              |  |
| g-y                 |                |                  |                             |                   |              |  |
| С-у                 |                |                  |                             |                   |              |  |
| D-y                 |                | (                |                             |                   |              |  |
| •                   |                |                  |                             | •                 |              |  |
|                     |                |                  |                             |                   |              |  |
| . Foundation        |                | Louisie          | I                           |                   |              |  |
|                     |                |                  |                             |                   | • //         |  |



# **2. DESIGN PROBLEM SOLUTION**



V. Zanic - Optimization of Thin-Walled Structures

# **OCTOPUS - DECISION MAKING FRAMEWORK**

| Model Jobs DeView<br>Job Selection                                    | Subproblem:                                                                                                                                                  | Dpt. SubProble | em 1                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                                      | Mo                                                                                                                                                                        | iei: F                     | IOPAX                                                                   | ~                                                                                                                                                                                         | 1                                                                                            | _                                                                                                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ID 1 V<br>Name:<br>Optimization_P0<br>View<br>Sequence<br>View<br>Run | Physical (0) Er<br>Subsystems<br>Phy Subsys<br>Dno<br>UzvDna<br>Bok<br>BLKHD<br>P7500<br>P13350<br>PalNad<br>BokNad<br>CS<br>Analysis Method<br>Physic<br>MM | vvironment P   | lesponse         Adeq           Elements         Se           Name         GP1           Q         GP2           Q         GP3           Q         GP4           Q         GP43           Q         GP44           Q         GP45           Q         GP45           Q         GP5           V         GP6           TS         TS           LS         LS | Adeque | elability<br>Descrip<br>Se N G<br>Ø D<br>Ø D<br>Ø D<br>Ø D<br>Ø D<br>Ø D<br>Ø D<br>Ø D<br>Ø D<br>Ø D | Quality<br>orrs Outputs<br>ame<br>P1.BBS<br>no.TPL<br>no.HSW<br>no.TSW<br>no.BSF<br>no.TSF<br>P1.HGW<br>P1.TGW<br>P1.BGF<br>Reliability<br>Beta-Unz<br>B&Bou<br>Elem.FORM | Quality<br>Wee<br>CC<br>Sa | Details<br>⊙ x ○ p<br>○ g ○ a<br>→<br>→<br>Rem<br>Rem All<br>St<br>tety | Selected<br>Dno.BSF<br>Dno.HSW<br>Dno.TSF<br>Dno.TSF<br>UzvDna.TPL<br>GirDna.HSW<br>GirDna.TSW<br>GirDna.TSW<br>GP7.BSF<br>GP7.HSW<br>ynthesis Method<br>pltimiser Coo<br>FFE M<br>GA Att | Value 29,18 157,7 13 22,3 9 11 150 12 12 12 28,32 142,4 \$ Selection rdinatc Vis odel Dibute | Min       23       125       7,5       13       7,5       8       130       10       7       20       120 | Max           30           162           13,5           22           13,5           170           15           160           Subproble           Add           Remove           ↑           InitDes | Step           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,5           0,6           0,7           0,7           0,7           0,7           0,7           0,7           0,7           0,7 | Method Me |              |
| TestGenDat                                                            | Subproblem List     ID Name     1 Opt. Sut                                                                                                                   | pProblem 1     | Variables<br>79                                                                                                                                                                                                                                                                                                                                            | Pa     | arameters                                                                                            | Attri<br>3                                                                                                                                                                | outes                      | 24                                                                      | nstraints<br>36                                                                                                                                                                           | Optimis<br>ZVGAS                                                                             | er<br>olver                                                                                               | NDOM                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Creat<br>Modif<br>Remov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e<br>y<br>/e |

| S                                            | YNTHESYS MODULES                                                                                                                                                                                                                                                                                                       |   |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| SYNTHESIS MODELS                             | OCTOPUS DESIGNER MODULES                                                                                                                                                                                                                                                                                               |   |
| Problem definition<br>(Δ)                    | <ul> <li>C# shell:</li> <li>SYNCHRO – decision support problem definition, selection of analysis and synthesis methods.</li> <li>Auxiliary modules:</li> <li>CAPLAN – control of Pareto surface generation</li> <li>LINC – definition of feasible subspace based on subset of linear/linearized constraints</li> </ul> | • |
| Problem solution<br>(Σ)                      | DeMak optimization solvers:<br>MONTE – multilevel multi criteria evolution strategy<br>FFE – Fractional Factorial Experiments<br>CALMOP - SLP cross section optimizer<br>MOGA - Multi objective GA<br>DOMINO – Pareto frontier filter<br>MINIS – subspace size controller<br>HYBRID – combination solver-sequencer     |   |
| Problem graphics and<br>interactivity<br>(Γ) | MAESTRO Graphic Environment<br>De View C# Environment<br>Design selection modules in metric space:<br>GOAL- interactive goal input<br>SAATY - inter-attribute preferences<br>FUZZY - intra-attribute preferences<br>COREL - statistical analysis of results                                                            |   |

V. Zanic - Optimization of Thin-Walled Structures

# PROBLEM DEFINITION (A) MODULES

#### • Problem definition:

- Objectives: Minimal weight; Minimal cost; Maximal safety measures, etc. from (Ω)
- Variables subset of prob. descriptors  $(\Phi, \alpha)$
- $(\Phi, \epsilon)$
- Constraints:
  - Minimal dimensions  $(\Phi_{\min})$
  - Library of criteria from (α-1,2)
- SYNCHRO decision support problem definition, selection of analysis (load, response, probabilistic data for ε, ρ-1,2,3 and π) and synthesis methods, etc.
- AUXILIARY MODULES:
  - CAPLAN control of Pareto surface generation
  - LINC definition of feasible subspace based on subset of linear/linearized constraints

V. Zanic - Optimization of Thin-W.



Synchro

(Sequencer)

# PROBLEM SOLUTION ( $\Sigma$ ): - Optimization solvers

| Genetic Algorithms Control |                           |                       |    |
|----------------------------|---------------------------|-----------------------|----|
| Coursed                    | One of the Target Colored |                       |    |
| General                    | - Uperator Types Select   | ion                   |    |
| Num Iterations: 5          | Algorithm:                | GenerationalGA        | *  |
| Population Size: 30        | Fitness Assignment:       | ZV_MOWC_FIT_ASSIGN1   | ~  |
| Crossover Propability: 1   | Fitness Selection:        | RouleteWheel          | *  |
| Mutation Propability: 0.05 | Crossover:                | ArithmeticRecomb      | ~  |
| Max Nondominated 500       | Mutation:                 | GaussianMutation      | ~  |
|                            |                           |                       |    |
| Manual Seed 1234           |                           |                       |    |
|                            |                           | $\Diamond$            |    |
| OK                         | Cancel                    | ]                     |    |
|                            |                           |                       |    |
| CALMOP Control             |                           |                       |    |
| Cycle Control              |                           |                       |    |
| Num Iterations: 5          | Reduced Mov               | ve Factor: 0.75       |    |
| Cross Section Constraints  | N                         |                       |    |
| Neutral Axis Max Height:   | Minimal Horizo            | ontal Inertia Moment: |    |
|                            | 0                         |                       |    |
| Weight Factors (Ponders)   | Relax Limit F             | actors                |    |
| Weight Neutral Axis        | Min<br>1                  | Max<br>1              |    |
|                            |                           |                       |    |
| Global Control             | Cycle Increa              | se Moment Factor      |    |
| Number of Cycles: 5        | Min                       | Max                   |    |
|                            | 1.2                       | 0.8                   |    |
|                            |                           |                       |    |
| UK                         |                           |                       |    |
|                            |                           | V. Zanic -            | Or |

#### **Optimization solvers :**

- MONTE multilevel multi criteria evolution strategies using :
- Adaptive MC algorithm
- FFE Fractional Factorial Experiments
- □ CALMOP SLP cross section optimizer
- □ MOGA Multi objective GA
- □ HYBRID combination solver-sequencer

#### Utilities :

- DOMINO Pareto frontier filter
  - MINIS subspace size controller



#### (1) CALMOP GLOBAL OPTIMISATION OF CROSS SECTION USING SLP



V. Zanic - Optimization of Thin-Walled Structures

#### (2) EVOLUTIONARY STRATEGY FOR SUBSYSTEMS (SUB-SYSTEMS e.g. GROSS PANELS)



#### (1) + (2): GLOBAL – LOCAL COORDINATION USING ENVELOPE OF LOCAL FAILURE SURFACES



#### (3) APPLICATION OF MOGA

- Large problemS:
  - over 200 variables
  - more that 2.500 constraints
  - 3 objective functions
- Solved with standard generational and steady-state genetic algorithms
- Modification of fitness assignment operator was required
  - fitness value based on Pareto dominance
  - penalty for constraint violation
  - use of technique of fitness sharing for achieving better spread of Pareto front



# GRAPHICS MODULES (T): PARETO FRONTIER





V. Zanic - Optimization of Thin-Walled Structures

### **DeView SNAPSHOT OF THE SELECTED DESIGN**

DeMak - The Decision Making Framework - Mex2\_FFE\_3gen Edit View Tools Windows Visualization D 📂 🖬 (🛍 🖬 🗶 (🖪 🔍 🎯 ) B 🛄 Inhe control for Opt. SubPro Dno.HSW Dno.TPL Rok HS Rok TP Paluba BSE 14,5 15 15 137 85 4109 4198 4111 4139 4088 4109 4156 4110 4128 **V** 168 150 155 150 155 150 160 150 150 160 Virtual SE 168 178 178 178 Graphs and 11 10,5 10,5 10 8,5 Activ Group 14,5 14,5 ī 147 147 137 137 Ţ 8,5 Tables rent Graph 10 10,5 178 168 173 178 168 173 15 15 14,5 14,5 14,5 14,5 , 7,5 \* 142 142 147 147 7,5 6,5 11 10 Options V V> M × M 8,5 10,5 4103 4173 X: Dno.TPI 4005 Y: Paluba.TPL Z: Bok.TPL Bok.H Palul CS1A Dno.TF Bok.T Paluba. Properties of 3752 130 15 112 180 12 15 180 120 4605 180 144,3 the Currently 100.9 12.93 156.1 10.07 6.64 5.86 7.099 12.18 159.8 91.41 4219 7.378 91.38 11,62 1,514 14,85 1,424 0,5349 8,482 1,116 0,7484 0,7928 0,6379 13,57 7,596 156,9 🔽 > Selected Design Name Options Filter Close (marked cross) 0 1093 ok.BSF 80 143 07 0,5813 ok.TPL ok.TSF 0,4626 Multiple 0 34 0,344 6 12,5 aluba. TPL 0 225 0,225 views of aluba.BSF 8 106 80 0,1209 *X*+*Y* spaces CS1.SAF.GM SP1.PSY.P... 0,4451 0,8367 0.8367 0 1213 *(selection of* 0,7524 0,7524 GP1.PSY.S... 0,2452 GP1.PSY.S... 0.3653 0,668 the 5-axis GP1.PSY.S... 0,3653 GP1.PSY.... 0,7516 0,5837 GP1.PSY.... 0,7516 GP1.PSY.S... 0,6569 GP1.PSY.S... 0,8705 GP1.PSY.F... 0,3567 GP1.PSY.F... 0,811 GP1.PSY.F... 0,811 GP1.PSY.F... 0,9251 0,4994 0,4994 views) 0,4151 0,4151 4093 3308 ,3308 3923 3752

#### DeMak – DEFINITION OF INTER / INTRA ATTRIBUTE PREFERENCES



### DeView – PARALEL AXIS PLOT



# **3. APPLICATIONS**

# **CASE STUDY A 1:** Structural Design, Analysis and Optimization of Large RoPax (3500 lanemeters),



DeMak inbuilt into MAESTRO

| PRINCIPAL DIMENSIONS                        |         |  |
|---------------------------------------------|---------|--|
| Length overall                              | 221.2 m |  |
| Length between perpendiculars               | 207.0 m |  |
| Breadth max. o.f                            | 29.0 m  |  |
| Depth to bulkhead deck                      | 9.8 m   |  |
| Depth to deck 5                             | 16.4 m  |  |
| Design draft                                | 7.0 m   |  |
| Scantling draft                             | 7.4 m   |  |
| Lanemeters                                  | 3500 m  |  |
| Speed at design draft with 4 engines at 85% | 24.5 Kn |  |

#### V. Zanic - Optimization of Thin-Walled Structures

#### **Design Problem Identification:**

Design objectives  $a_{1-3}(.)$ : min. weight, min. cost, max. safety

Free design variables  $\underline{X} = \{\underline{x}^1, ..., \underline{x}^{NS}\}$  are scantlings; nv =264

Constraints  $g(\underline{X}) \ge 0$ ; ng  $\approx$  49000 from DnV Rules

Prototype *P*<sup>0</sup> scantlings from Yard documentation

Frame spacing and topology fixed to  $P^0$  design values.

| D          | )es | ign sequence                                              |                                                          |                              |
|------------|-----|-----------------------------------------------------------|----------------------------------------------------------|------------------------------|
| Ste        | р   | Task                                                      | Method                                                   | Module*                      |
|            | 1a  | Rule load analysis                                        | DNV                                                      | OCTLOAD                      |
| sis        | 1b  | Seakeeping load<br>analysis                               | 3D- panel                                                | BV<br>HydroStar              |
| se analy:  | 2a  | Structural<br>response and<br>adequacy analysis           | 2.5-D FEM                                                | LTOR-<br>TOKV-<br>EPAN       |
| respon     | 2b  | Primary ultimate<br>strength analysis                     | Nonlinear<br>analysis                                    | LUSA+2a                      |
| otype      | 2c  | Deterministic<br>racking analysis                         | 2-D FEM                                                  | TOKV-<br>EPAN                |
| Prot       | 3a  | Probabilistic a. of<br>primary response                   | M <sub>SW</sub> , M <sub>W</sub> ,<br>M <sub>ULT</sub>   | CALREL /<br>SORM+2b          |
|            | 3b  | Probabilistic a. of racking response                      | β-<br>unzipping                                          | US3+2c                       |
|            | 4a  | Reliability based concept optim.                          | OA (L27)<br>designs                                      | DEMAK /<br>FFE+2b+3b         |
| gn         | 4b  | Filtering of<br>Pareto<br>prototypes                      | p <sub>f-rack</sub> -<br>mass -<br>M <sub>long-ult</sub> | DEMAK<br>(DOMINO)            |
| t desi     | 4c  | Selection of<br>preferred designs                         | Value<br>function                                        | DEMAK-<br>DEVIEW             |
| Concep     | 5   | Deterministic<br>optimization of<br>preferred designs     | Hybrid<br>optimizer                                      | DEMAK /<br>SLP+FFE+<br>+2abc |
|            | 6   | Reliability based<br>re-optimization of<br>optimal design | OA (L27)<br>designs                                      | DEMAK /<br>FFE+3b            |
| design     | 7a  | Structural<br>analysis and<br>optimization                | 3-D FEM<br>+SLP<br>+DEMAK                                | MAESTRO                      |
| liminary o | 7b  | Probabilistic<br>analysis of opt.<br>design racking       | β-<br>unzipping                                          | US3+2c                       |
| Pre        | 7c  | Robustness<br>analysis                                    | Taguchi<br>S/N Ratio                                     | ROBUST                       |

\* see Table 1 and Figure 1.

# PROTOTYPE:SAFETY ANALYSIS

Prototype deterministic safety analysis showed that prototype failed in 35 criteria w.r.t DNV Rules (out of 8820 checks for 7 LCs) in:

 $\Box$  double bottom (stiff. panels/ frames  $g_{FCPB} = -0.268$ )

 $\Box$  tank-side (st. panels e.g.  $g_{U-BCAES,min} = -0.172$ )

□ deck5-middle (st. panel e.g. g<sub>PFLB,min</sub>=-0.243)

❑ Ultimate bending moment-LC1(sagg)=3.93 106 kNn LC2 (hogg)=3.18 106 kNm (bottom collapse in compression-see above).

□ Identified failed elements were non-optimally

strengthened (mass increased 1.2%; strong prototype 
)

□ System failure probability (Ditlevsen upper bound) for the 45 identified relevant (level-3) failure scenarios was:  $p_f=0.101 \cdot 10^{-6}$ ;  $\beta_G=5.198$  showing the existence of considerable safety margin

V. Zanic - Optimization of Thin-Walled Structures

# **Optimization results**

| MODEL      | Geometry<br>S <sub>w</sub><br>L <sub>FEM</sub><br>(mm) | Weight of<br>optimization<br>model (t)<br>W <sub>start</sub> W <sub>opt</sub> | Weight per<br>length<br>W <sub>opt</sub> / L <sub>FEM</sub><br>(t/m) | Savings<br>before<br>final<br>standard.<br>$\frac{(W_{start} - W_{opt})}{W_{start}}$ | Global<br>safety<br>(adequacy)<br>measure | Weight of<br>design<br>model<br>W=L*k*w <sub>L</sub><br>(t) | Increased<br>deadweihgt =<br>decreased<br>steel weight |
|------------|--------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
| PROTOTYPE  | 2800<br>33600                                          | 1355                                                                          | 40.33                                                                | -                                                                                    | 0.9622                                    | 5646                                                        | -                                                      |
| PROPOSAL 1 | 2800<br>33600                                          | 1355<br>1220                                                                  | 36.31                                                                | 9.97%                                                                                | 0.9905                                    | 5083                                                        | 563 t                                                  |
| PROPOSAL 2 | 2400<br>28800                                          | 1202<br>1046                                                                  | 36.32                                                                | 9.94%                                                                                | 0.9889                                    | 5085                                                        | 561 t                                                  |
| PROPOSAL 3 | 3000<br>36000                                          | 1416<br>1282                                                                  | 35.61                                                                | (11.70<br>%)                                                                         | 0.9719                                    | 4985                                                        | 661 t                                                  |
| PROPOSAL 4 | 2800<br>33600                                          | 1382<br>1139                                                                  | 33.90                                                                | experi<br>ment                                                                       | 0.9683                                    | /                                                           | /                                                      |

# **CASE STUDY 2:** Structural Design, Analysis and Optimization of **Passenger/Car Ferry (L=169 m, 11 decks)**



#### MAIN PARTICULARS:

LOA = 176,0 m LPP = 169,0 m B = 32,0 m T = 10,0 m Speed trial = 22 Kn 2200 passengers 600 cars

#### **OPTIMIZATION PROCEDURE**





V. Zanic - Optimization of Thin-Walled Structures

The four ships of this type have been built in Croatia and they operate in the Baltic.

The optimization was performed due to the owner's conflicting requirements on ship weight and vibration criteria.

Cost sensitivity study with respect to frame spacing (800, 850 and 900 mm)was performed for the third and fourth ship.

Design process is divided into two parts :
optimization for weight critical design
cost sensitivity study with respect to frame spacing.
The optimization model included : 492 scantlings of design
variables

#### Results

□Problem of structural adequacy is solved by simultaneously resolving 49 unsatisfied failure criteria of the very sophisticated prototype.

□Weight decrease of 600 kg/m has been achieved for critical weight constrained design, as compared to the minimal weight prototype, giving 60 tons of weight reserve to the designer to be used in satisfying vibration criteria.

□Sensitivity study shows that the cost of structure per meter is rather insensitive to frame spacing, in given interval, due to cancellation of the effects of structural modifications and smaller number of web frames.

#### V. Zanic - Optimization of Thin-Walled Structures

# **CASE STUDY 3:** Structural Design, Analysis and Optimization of **Reefer/Ro-Ro Ship** (470000 cbft)





#### Loadcase description



#### **Optimization Procedure**



# **CASE STUDY 4:** Structural Design, Analysis and redesign of **Car-Truck Carrier LOA** = 176.7 m, 5300 cars





V. Zanic - Optimization of Thin-Walled Structures

#### Full Ship F.E.M Model, Immersion Load and Global Response





### **MOGA** optimisation of CAR CARRIER

|                                                                                                             | Number                                             |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Design Variables:                                                                                           | 635                                                |
| Constraints:                                                                                                | 2469                                               |
| Objectives:                                                                                                 | 3                                                  |
|                                                                                                             |                                                    |
| 200103 102 103 104 105 100 107 108 107 215 214 213 2                                                        | 212 211 200 200203                                 |
| 90.97 82 94 94 96 99 97 96 209 205 204 209 2                                                                | 202 201 200 199189<br>187                          |
| 80 81 82 83 84 85 86 87 88 198 196 194 193 1<br>79                                                          | 92 191 190 18918 <mark>8</mark><br>1 <sup>07</sup> |
| 70 71 72 73 74 75 78 77 78 188 185 184 189 1                                                                | 82 181 181 181 181 8                               |
| 80 87 82 83 84 85 88 87 88 178 178 178 178 1                                                                | 72 171 170 165166                                  |
|                                                                                                             |                                                    |
| 58<br>48 50 51 52 53 54 55 56 57 165 164 163 167 1                                                          | 166<br>61 161 159 158 157                          |
| 9 <sup>8</sup>                                                                                              | j≴R                                                |
| 97<br>38 99 40 41 42 49 46 46 46 16 164 179 162 167 1                                                       | 155<br>60 149 148 847 146                          |
| 37<br>37<br>00 08 09 00 08 08 05 05 10 10 10 10                                                             | 145                                                |
| 20 20 20 20 20 20 20 20 20 20 20 194 145 142 141 1<br>20<br>01 91 91 92 92 93 90 95 98 97 194 199 199 199 1 | 199 199 199 197<br>196<br>197 190 190 199          |
|                                                                                                             | 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14       |
|                                                                                                             |                                                    |



#### **PROGRESS OF PARETO FRONTIER**



#### **CASE STUDY 5:** First class passenger ship (800 passengers) Redesign for Cantieri Nuovi di Apuania, Navis Consult–Rijeka



V. Zanic - Optimization of Thin-Walled Structures

# **CASE STUDY 6:** Structural Design, Analysis and Optimization of **Tank car carrier (L=52 tank cars**)



#### Principal dimensions:

| Length overall                | 154.50 m    |
|-------------------------------|-------------|
| Length between perpendiculars | 147.00 m    |
| Breadth moulded               | 17.50 m     |
| Breadth max.                  | 18.30 m     |
| Depth to upper deck           | 7.50 m      |
| Depth to accommodation deck   | 13.35 m     |
| Draught                       | 7.70 m      |
| Deadweight                    | 5000 t      |
| Main engines                  | 2 X 2000 kW |
| Speed trial (80% MCR)         | 14.0 knots  |
| Wagons                        | 52          |
|                               |             |

CONTROL STRUCTURE NO I

> OPTIMIZATION MODULE

#### **Loads and Response**



#### CONCEPT STRUCTURAL DESIGN OF THE TANK CAR CARRIER (MOGA)

|                   | Number |
|-------------------|--------|
| Design Variables: | 79     |
| Constraints:      | 2496   |
| Objectives:       | 3      |





V. Zanic - Optimization of Thin-Walled Structures

#### **PROGRES OF PARETO FRONTIER**





**CASE STUDY 7:** Livestock Carrier (LOA = 176.7 m, 24 000 sq.meters) Yard no. 428 for ULJANIK Shipyard.

**Objective of case study was to demonstrate:** 

-3

0

721.6

724.3

-0.05

1

7.3%

7.0%

SS

 $|O_{2}|$ 

131.2

131.7

- The structural analysis and redesign of the FEM model of livestock carrier according to R.I.N.A Rules.
- Racking analysis to identify relevant critical areas in the transverse structure.
- Detail design : Feasibility of additional openings in principal structural members through the fine mesh models

#### Longitudinal Section and Global Respons



V. Zanic - Optimization of Thin-Walled Structures

**CASE STUDY 8A:** Suezmax Tanker (LOA = 280.0 m, 166 300 TDW) Yard no. 433-434, for BRODOSPLIT Shipyard.

**Objective of case study was to demonstrate:** 

- -The optimization process for 3 prototypes of SUEZMAX tanker with web frame spacing of 3940, 4410 and 5065 mm.
- -Structural optimization for minimal structural weight under class.soc. requirements.
- -Sensitivity analysis of ship structural weight with respect to web frame spacing.
- -Fine mesh stress analysis (DSA) of final PROTOTYPE under BV requirements as decision support problem for final scantlings determination.

#### Longitudinal Section, F.E.M Model and Global Respons



### DSA/Fine Mesh Model – Maximum Principle Stresses



# **CASE STUDY 8B:** Structural Design, Analysis and Optimization of **Tanker for oil** (70000 TDW)



V. Zanic - Optimization of Thin-Walled Structures

### **Optimization Procedure**





#### Subjective decision making using paralel axes



# CONCLUSIONS

- The case studies have proved the following points:
  - Increased deadweight + decreased cost of mat. & work
  - Increased safety due to rational material distribution
  - Considerable modifications are quickly performed following the head designer's requests.
  - Cost sensitivity study can be produced even during negotiations with ship owner.
  - Full ship analysis avoids gross-errors due to unknown normal and shear stress distribution.

V. Zanic - Optimization of Thin-Walled Structures

The complex full ship macroelement model can be generated simultaneously with class. documentation starting from general arrangement.

Structural modeling and loadcase selection should start as soon as possible and follow, support and simplify the decision making to the designer.

Modern design procedure is a necessity rather then an option and FMENA is interested in participating in projects on

development of advanced software for ship design and

its application to inovative ship types.

